Zufallsgenerator

Zufallsgenerator

Zufallszahl

Deine Zufallszahl ist 20 .

Eine neue Zufallszahl zwischen und generieren lassen.

Kopf oder Zahl?

Die Münze zeigt Kopf .

Münze neu werfen | Münzwurf (graphisch)

Würfeln

Du hast eine 3 gewürfelt.

Neu würfeln | zum Rollenspiel Würfel

Zufällige Lottozahlen

Deine Lottozahlen sind 2-21-22-35-36-48.

Neue Lottozahlen generieren

Zufälliges Passwort

Dein Zufalls-Passwort ist Ago%.M8Ft%.

Zufälliges Passwort neu generieren.



Durch den Zufallsgenerator, auch Zufallszahlengenerator genannt, lassen sich Zufallszahlen aus einem individuell anpassbaren Zahlenbereich ermitteln. Das Ergebnis des Zufallsgenerators liegt dabei stets in der Menge der ganzen Zahlen und lässt sich somit ideal für Gewinn- oder Glücksspiele jeglicher Art verwenden. Ist eine Entscheidung mit Ja oder Nein zu beantworten oder geht es beispielsweise darum, wer Vorrang bekommen soll, kann hierzu auch der sogenannte Münzwurf genutzt werden. Die Chance liegt bei jeweils 50 Prozent, dass entweder Kopf oder Zahl ausgegeben wird. Beim Würfeln wird eine Zufallszahl aus dem Bereich zwischen 1 und 6 ermittelt. Die Aussicht, hier einen Treffer zu landen, ist mit 16,66 Prozent relativ gering. Weiter lässt sich der Zufallsgenerator auch für die Ermittlung von Lottozahlen zu Hilfe nehmen. Es erfolgt eine Ausgabe von 6, rein aus dem Zufall heraus erstellten Ziffern zwischen 1 und 49. Die Chance auf den Glücksfall, 6 Richtige zu erhaschen, ist bekanntermaßen minimal und mit einer Wahrscheinlichkeit von 1 zu 13.983.816 beziffert. Dieser Wert lässt sich anhand der für die Berechnung eines Lottogewinns relevanten Formel ( 49 x 48 x 47 x 46 x 45 x 44 ) / ( 1 x 2 x 3 x 4 x 5 x 6 ) nachvollziehen. Falls dabei auch noch die Superzahl mit einbezogen werden soll, sinkt die Gewinnwahrscheinlichkeit auf 1 zu 15.537.573.

Die Ausgaben des Zufallszahlengenerators werden nach einem, im Programmcode hinterlegten Algorithmus zur Generierung von Zufallszahlen ermittelt und weisen die für Zufallszahlen üblichen, sogenannten statistischen Eigenschaften auf. So kann man davon ausgehen, dass sich bei n Läufen die Ergebnisse gleichmäßig über die zur Verfügung stehende Zahlenmenge verteilen und es zu keiner ungleichmäßigen Häufung von Zahlen kommt. Die ermittelten Ergebnisse sind dementsprechend nicht voraussag- oder gar beeinflussbar.